PostgreSQL & Graph &
Vector

CEEﬂ / MyoungSig.Youn)

n °I:Illkl

Company IHIJI =l

Email

S8 201 Z01M [1|0IEIIHIOI XO0F 2=
oHlj illl DHXI CheESt CIOIETHIOIA E

Il=
ol !

of

-

B Phone.

: myoungslg youh@mz.co.kr
jazzlian@gmail.com
010 8948-9592

A=
)

A
al

e LIOIEIHIOIA 2h= O]
S2E CIOIEIHIOIA NS 2301 AS

PostgreSQL + PostGIS
PostagreSQL + TimeScale
PostagreSQL + Oraface
PostgreSQL + Citus
PostgreSQL + hstore

PostagreSQL + AWS
PostagreSQL + Azure
PostagreSQL + Google

PostgreSQL + GRAPH = AGE

GRAPH

Which of the following
iIS hot the graph we are
talking about?

\,

Graph

Name:

Name:
portable
phone

Name:
cell phone

digital PDA

mme:

UK
taxonomy
subgraph

tablet
computer

Tablet
subgraph

Z1: Building Knowledge Graphs A Practitioners Guide

Pie chart

ltem 4 (ZENm 1(25%)
ltem 3 (18%) :

ltem 2 (33%)
Line chart
283 ¢ Group4
700 / “'[_ Group 2
600 f \ / —
500 — T
400 II _)‘ i Group1
300 = 7
200 \' Group 3
oo P T
ST s> VYOo=09
292823388823
287 2383 3
2 T 28

City

: Real World Graphs
N Leonardo
=\ \% S @ %;‘__7:2 pigl s
?\‘;Ce \ Bilt N SON3 L

Star Wars

Mark @ acted_in

. ¥ George
Hamill ac:\ed ; —~ directed Lucas
Carrie acted_In ls]_sequel_of
Fisher acted_in

acted_in . . Irvin
directed
Harrison 2z
fson @ e Kershner

The Empire
Strikes Back

GRAPH

<—— ACCEPTE

date: (?1-02—2021
id: 0001 id: asdfg quanti
amount: $5 ty:1

RESIDES

PURCHASE

Liked (Undirect

Person Edge)
id: 1025
. 4 by_user: 19 -
id: 7 ! . . id: 12
email: vbarracks6@utexa liked_post: 12 liked_da content: Suspendisse ornare -,

s.eduusername: vharrac te:2021/07/M posted_date: 2020/07/31
ks6 posted_by: 7

name: Virgie Barra deleted: False

cks join_date: 20

21/09/02

mailto:vbarracks6@utexas.edu
mailto:vbarracks6@utexas.edu

GRAPH

Tables & Graphs

Table representation Graph visualization
1 Statistics Theory Methodology 7
2 Numerical Analysis Dynamical Systems 2
3 Numerical Analysis ~ Computational Physics 2
4 Numerical Analysis Optimization and Control 2
5 Numerical Analysis Machine Leaming 4
108 Number Theory Algebraic Geometry 8
109 Classical Analysis and ODEs Combinatorics 2
110 Classical Analysis and ODEs Probability 2
111 Classical Analysis and ODEs Functional Analysis 6
112 Classical Analysis and ODEs Analysis of PDEs 5

GRAPH

ERD

Project

titie

startDate

endDate
departmentiD (FK)

v

Department

Project_Members

Department_Members

projectiD (FK)
personiD (FK)
role

departmentlD (FK)
personiD (FK)

Person

Y l

1D (PK)
name

parentDepartmentiD (FK)

leadPersonID (FK)

Organization

ID (PK)
entitylD (FK)
dayOfBirth

Entity

1D (PK)
entitylD (FK)

H: Relational

\

name

atabase M

1D (PK) <

departmentiD (FK)
taxid

META GRAPH

:Person, :Entity

name
dayOfBirth

\'4 raph Database M

:‘BELONGS_TO 1
:Project P T~ v 2IS_PART_OF
title i _,
startDate name
endDate
AN
:LEAD_BY "WORKS_AT :

' :0rg, :Dept, :Entity

| name

 taxid

ling (heo4j.com

https://neo4j.com/blog/rdbms-vs-graph-data-modeling/

IFA(Index—-Free—Adjacency)

name: “Bob”

age: 25

Lo

previous relationship for
start node end node

l]

.................... LIKES: fassss

]

next relationship for
start node end node

name: “Alice”

Figure 6-5. How a graph is physically stored in Neo4j

IFA(Index—-Free—Adjacency)
10

Top Group
Links | 4,5

5 6
Some Group Other Group CHILD_OF
Links | 2,1 Links | 3,2

& 0$0

== e

MATCH (n) <-- (:Group) <-- (:Group) <--|(:Group {id: 3})

RETURN :

Anchor Node

Jther Group

el

6 JALinks (6)—
-

Links | 2,2

ORACLE GRAPH

CREATE PROPERTY GRAPH BANK_GRAPH
VERTEX TABLES (
BANK_ACCOUNTS
KEY (ID)
PROPERTIES (ID, Name, Balance)
)
EDGE TABLES (
BANK_TRANSFERS
KEY (TXN_ID)
SOURCEKEY (src_acct_id) REFERENCES BANK_ACCOUNTSI(ID)
DESTINATION KEY (dst_acct_id) REFERENCES BANK_ACCOUNT
S(ID)
PROPERTIES (src_acct_id. dst_acct_id, amount)
)

t started with pr rty araphs in

racle Database 23c Free —Developer
Release

racl atial and Graph

REM Check if there are any 3—-hop (triangles) transfers th
at start and end at the same account
SELECT acct_id, COUNT(1) AS Num_Triangles
FROM graph_table (BANK_GRAPH
MATCH (src) - [1-M{3} (src)
COLUMNS (src.id AS acct_id)
) GROUP BY acct_id ORDER BY Num_Triangles DESC:

ACCT_ID NUM_TRIANGLES

118 rows selected.

https://blogs.oracle.com/database/post/get-started-with-property-graphs-in-oracle-database-23c-free-developer-release
https://blogs.oracle.com/database/post/get-started-with-property-graphs-in-oracle-database-23c-free-developer-release
https://blogs.oracle.com/database/post/get-started-with-property-graphs-in-oracle-database-23c-free-developer-release
https://en.wikipedia.org/wiki/Oracle_Spatial_and_Graph

SQL Server GRAPH

Database

l Contains

Graph
isCollectionOf
Node or [—|
Edge Table S
T\
Node table Edges connect Edge table
has Nodes may or may
Properties not have

Properties

—— Create a GraphDemo database
IF NOT EXISTS (SELECT * FROM sys.databases WHERE NAME = ‘graphdemo’
)
CREATE DATABASE GraphDemo:
GO

USE GraphDemo:
GO

—— Create NODE tables
CREATE TABLE Person (
ID INTEGER PRIMARY KEY,
name VARCHAR(100)
) AS NODE:

CREATE TABLE Restaurant (
ID INTEGER NOT NULL,
name VARCHAR(100).
city VARCHAR(100)

) AS NODE:

CREATE TABLE City (
ID INTEGER PRIMARY KEY,
name VARCHAR(100),
stateName VARCHAR(100)
) AS NODE:

—— Create EDGE tables.

CREATE TABLE likes (rating INTEGER) AS EDGE:
CREATE TABLE friendOf AS EDGE:

CREATE TABLE livesin AS EDGE:

CREATE TABLE locatedin AS EDGE:

=1: https://learn.microsoft.com/ko-kr/sql/relational-databases/graphs/sql-graph—architecture?view=sql-server-ver16

https://learn.microsoft.com/ko-kr/sql/relational-databases/graphs/sql-graph-sample?view=sql-server-ver16

SQL Server GRAPH

—— Find Restaurants that John likes

SELECT Restaurant.name

FROM Person, likes, Restaurant

WHERE MATCH (Person-(likes)—-)Restaurant)
AND Person.name = ‘John‘;

—- Find Restaurants that John's friends like

SELECT Restaurant.name

FROM Person personl, Person person2, likes, friendOf, Restaurant
WHERE MATCH(personl1-(friendOf)-)person2-(likes)-)Restaurant)
AND personi.name=‘John";

—— Find people who like a restaurant in the same city they live in

SELECT Person.name

FROM Person, likes, Restaurant, liveslin, City, locatedin

WHERE MATCH (Person-(likes)-)Restaurant-(locatedin)-)City AND Person-(livesin)-)City):

—- Find friends—of-friends—of-friends, excluding those cases where the relationship “loops back”.

—— For example, Alice is a friend of John: John is a friend of Mary: and Mary in turn is a friend of Alice.

—— This causes a “loop“ back to Alice. In many cases, it is hecessary to explicitly check for such loops and exclude the results.

SELECT CONCAT(Person.name, ‘-)‘, Person2.name. ‘-)‘, Person3.name, ‘-)‘, Person4.name)

FROM Person, friendOf, Person as Person2, friendOf as friendOffriend, Person as Person3, friendOf as friendOffriendOfFriend. Person as Person4
WHERE MATCH (Person—-(friendOf)-)Person2—-(friendOffriend)-)Person3—-(friendOffriendOfFriend)-)Person4)

AND Person2.name != Person.name

AND Person3.name != Person2.name

AND Person4.name !=Person3.name

AND Person.name != Person4.name:

PostgreSQL + Apache AGE(BITNINE)

- Graph Database Plugin for POS | CREATEEXTENSION age:

tagreSQL LOAD ‘age’;
° Hybrid Queries (Opencypher A SET search_path = ag_catalog. “$user”, public:
nd SQL) SELECT create_graph(‘graph_name’);

 Fast Graph Query Processing SELECT »

* Graph Visualization and Analy | FROMcypher(‘araph_name’, $$
CREATE (:label {property:.valuel)

tics 9) as (v agtype);
* Current PG15 support SELECT »
FROM cypher(‘graph_name‘, $$
MATCH (v)
RETURN v
$9) as (v agtype);
SELECT *
" FROM cypher(‘graph_name’, $$
htt - I I el apa h r I MATCH (a:Person), (b:Person)

WHERE a.name = ‘Node A‘ AND b.name = ‘Node B*
CREATE (a)-[e:RELTYPE {name:a.name + ‘(-)‘ + b.name}1-)(b)
RETURN e

$9) as (e agtype);

https://github.com/apache/age
https://age.apache.org/

Architecture

AGE Architecture

Parses Cypher queries by a function call
1 that uses a parser following the
Query Parsing openCypher specification

Transforms a Cypher query into a Query
Query Transform 2 tree that will be attached as a subguery
node.

Planner/Optimizer Understands some graph operations and

3 produces plan nodes that are related to
graph operations.

—
(1]
o

5
(1]

=
L]
(1]

[

.
=

o

B
(1]
[Fy 1
|
e

l—

Executor

Executes plan nodes that are related to
graph operations.

Storage (PostgreSQL)

Cypher queries work with Postgres’
existing fully transactional system (ACID).

OI0IXI =X: Apache AGE =21 =M ZHI0IXI

Architecture

AG E : Cypher in SQL

SELECT nname

RETURN properties(n) AS n;

n

{"name™: “someonea®, “year®: 2015)
(1 row)

Ol0IXI =X: [Postgres Build 20201 Apache AGE. the Extension of PostgreSQL | by Apache AGE | Medium

https://apache-age.medium.com/postgres-build-2020-apache-age-the-extension-of-postgresql-74bcd64f4d03

Architecture

SELECT p.npi, p.first name, p.last name, c.dos, c.claim date

FROM cypher('provider graph', $$ --Cypher query on provider graph
MATCH (p:provider)
RETURN p.npi, p.first name, p.last name

$$)

AS p(npi agtype, first name agtype, last name agtype)

JOIN cypher('claims graph', $$ --Cypher query on claims graph
MATCH (c:claim)
WHERE c.claim type = 'LTSS' --Filter out non-LTSS claims
RETURN c.renderingnpi, c.date of service, c.date reported

$$) AS c(npi agtype, dos agtype, claim date agtype)

ON c.npl = p.npi;

& npi ??1 & first_name V3| Elast_name 7| E dos 3| B claim_date V3
| 1567890 | el "Smith" "May 01, 2020" "May 15, 2020"

Ol0IXI =X: [Postgres Build 20201 Apache AGE. the Extension of PostgreSQL | by Apache AGE | Medium

https://apache-age.medium.com/postgres-build-2020-apache-age-the-extension-of-postgresql-74bcd64f4d03

Cypher Cheat Sheet

| |
START me=node:people(name="Andres"') MATCH n--—>m A pattern where .n has
[MATCH me-[:FRIEND]->friend] outgoing relationships to
WHERE friend.age > 18 another node, no matter

RETURN me, friend.name relationship—-type

ORDER BY friend.age asc MATCH n——-m n has relationship in
SKIP 5 LIMIT 10 l either direction to m

MATCH n-—[: KNOWS]—->m The outgoing relationship
between n and m has to be
of KNOWS relationship type

START meaning MATCH n-[:KNOWS|LOVES]-m n has KNOWS or LOVES |

START n=node(id, [id2, Load the node with id 1 relationship to m

id3]) . id into n ' MATCH n-[r]->m | An outgoing relationship
START n=node:indexName Query the index with an from n to m, and store the
(key="value") exact gquery and put the | relationship in r

result into n ' MATCH n—[r?]->m IThe relationship is

optional
Use node_ auto_ index for e
the auto—-index MATCH n—-[*1..5]->m A multi step relationship

between between n and m,
one and five steps away

START n=node:indexName Query the index using a :
("lucene gquery") full Lucene query and - MATCH n-—[*]—->m A pattern where n has a
‘relationship to m unbound

put the result in n
number of steps away

| START n=node(*) Load all nodes

|
- —_—

! ' MATCH n—-[? :KNOWS*..5]->m ' An optional relationship
START m=node(l), Multiple start points between n and m that is of
. n=node(2) | KNOWS relationship type,

and between one and five
steps long.

5 EMATCB n—-—->m<—-o A pattern with n having an
I e — meaning outgoing relationship to

RETURN * Return all named nodes, m, and m having incoming
relationships and iden- relationship from o
tifiers MATCH p=n—->m<—-—0o Store the path going from

RETURN expr AS alias Set result column name n to o over m into the
as alias ‘ path identifier P

RETURN distinct Return unigque wvalues {MATCH p = shortestPath(Find the shortest path

expr for expr n—[:EKNOWS*3]->m) between n and m of type

!
\ KNOWS of at most length 3

Cypher Cheat Sheet

Read-Write-Return Query Structure

START emil—fmode:pecple(name=—"Emil ")
MATCH emil—[tMARRIED TO)]—madde

CREATE/CREATE UNIQU=E

emil—[DAD]—{noomi J{name: "Noomi"3})<—{(::MOM]—madde=s

DELETE emil.spare time
SET emil. happy—true
RETURN noomi

CREATE
CREATE (nn {
name = “"Name™ 3})
CREATE nn = {map)

CREATE nn = {manyMaps})}

CREATE n—{[tKNOWS] ——=m

CREATE n—[:LOVES
{si1nce: 200731 ——m

DELETE nn, DELETE rel

DELETE n.prop

CREATE UNITQUE

CREATE UNIQUE
n—[: XNOWS] —=>m

CREATE UNIQUE
n—[s XENOWS | —=(m
im =T s =)

CREATE UNIQUE
n—[: LOVES {since: 20073)
—=m

meaning

Creates the node with
Tthe giwven properties

Create node from map
Paramecter

Create many nodes from
arameter with
coll of maps

Creates the
relationship with tThe
given Type and 4dir

CTreates the
relationship with The
given Ttype, 4dir, and
pProperties

meaning
DPDeletes the node,
relationship

Remowves the propercty

meaning
Trijes to match the
rattern. Creates the
missing pieces 3if the
match fails

Tries To match a node
sSet to "Name™. Creates
Tthe node and sets the
Property 3f it can’t be
found.

Tries to find the
relationship with The
given Type, direction,
and attributes.
Creates it if notot
found.

sET

s=T n.prop = wvalue

SET n = {map)

SET n.prop = nuil

Predicates

NOT predl AND/ OR pred?2

AYI.{(x Iin coll: pred)

ANY (x Iin coll : pred)

NONE({(>x in coil = pred)

SITINGLE(x Iin coll = pred)

Fdentifier IS NULIL.

n.prop? = wvalue

n.prop! = walue

n =— J/regexp/
el == =2

=l = a2

el = e2

has(n.prop)
n—f =TYPFP=E j —>m

expr IN coll

meaning

Updates or creates the
Droperty prop with the given
value

Updates the properties with
the given map
Darametexr

Deletes the property propo

meaning

Boolean operators for
Dredicates

TRUE if pred is TRUE for ail

wvalues in
coll

TRUOE if pred is TRUE for atc
least one value in coll
TRUE if pred returns FAILSE
for all wvalues 3Iinx

coll

TRUE if pred returns TRUE
for a single value in coll

TRUE if jgentifieris <NULL>

TRUE if n.prop = value or =«
Iis NOULIL., or n.prop does not
exist

TRUE if n._.prop = value,
FAISE 3if n 3is NULL., or n.prop
does not exist

Regular expression

Comparison operators

Checks=s if property exists

Filter on existence of
relationship

Checks fTor existence of exp=—
in coll

Demo

1. Setup — Apache AGE master d mehntation

2. Importing graph from files — Apache AGE masterd mentation

https://age.apache.org/age-manual/master/intro/setup.html
https://age.apache.org/age-manual/master/intro/agload.html

PostareSQL + Vector = pgVector

VECTOR

Key-Value Documents Graph Vector Database
{ A
@ O--- o
......... o — s
‘ /\i/ - '1’ ‘\ o‘ \‘\
y e @ = o N
Vector

A vector is a mathematical representation of data that descri
bes objects based on different characteristics or qualities.

VECTOR

Vector Database

Vector databases are specializ

ed databases for storing and q -
uerying large amounts of high-
dimensional data optimized in
vector form.

Data

—__p—
s Y e |
— L p—
o PERY o |
—) el

Vector

Traditional

Vector
Database

VECTOR

Object

& @
IMACE IMAGE
TRANGF ORMER

Happy
Birthday
TEXT NP

TRANGF ORNE R

BHEs:

ALDIO AULDO
TRANSFORMER

OINIXI =X: https://dev.to/j t

Vector

[1.3,06,1.2,13,.]

[0.3,-0.4,1.2,0.3,..]

[1.2,-03,07,-1.8,..]

Task

Object recognition, deduplication,
scene detection, product search, ...

Translation, understanding, Sentiment,
Question Answering, Semantic Search, ...

Anomaly detection, speech-to-text, music
transcription, machinery malfunction, ...

200/vector—-databa -5df1

https://dev.to/josethz00/vector-databases-5df1

VECTOR

Index data Movie recommendations
e . U : | query with movie recommendations ;
!) y movie ID Movie :
: Movie : «® . : 10s !
- mws | > | Movie Model P add : > :
' store 1 l -’ : "
X embeddings ; !
D e e oy L N e i) A P o o ke e e e

————————————————————————————————— ——i—--——-————---————————-—-—'
query with

user embedding
movie recommendations

! '
! |
! '
| \
! '
')
{ \
|

User g
dl s | User Model > vos !
'
i :
' |
'
: ' '

OI0IXI =X: https://rfriend.tistory.com/804

VECTOR

Unstructured data Embedding model Vector database Large Language Models

a L AR
® L LLM

OpenAl
‘ = ‘ ‘ © 4.Bard

n = (- Hugging Face OpenAI
, - ivus :
D ® cohere 00 Meta S.fﬁ'ﬁi‘ézd

€3 Pinecone

Construct prompts

>
>

Query LLM and get answers

1 Ask questions Create Get relevant
e_©O > ; >
% am Embeddings documents from db

-
“

2 Longterm
User query s 0"

@ P [] >
=% bed histd ey

) Create : b e — Get response

Embeddings _ o d Query LLM and get answers
.3 ° Ask questions 0 Cache log ku;p Corlstruct prompts, if not in caché

203 iz reate I d Query LLM and get answers

= Embeddings 5-“’"‘ — < | Result:storeinCache |

Check Cache for

— 5 Served by LM \ / imilar queries &answ

——» Served by Vector db

Vector Database

\
Vector Embe_o(o(ing

[0.34, -1.2, 0.34, 1.3, ... -0.03,114]

_J

vecters fulests e, | S

https://devocean.sk.com/blog/techBoardDetail.do?ID=164964&boardType=techBlog

VECTOR

&1 P
.~ Plnecone @
‘ 4 "{\'"{“‘ g ,-)-?l v ” i 'i". ;,!7 'y ,;:,‘

Weaviate

PostgreSQL m

Meta

reenplum] Greenplum@] pavector®l nAlS 012010 [H15& Al J|Et

an 1=0olJI (Building large—scale Al-powered
using pgvector and OpenAl) (tistory.com)

arch in Gr

https://github.com/pgvector/pgvector
https://github.com/pgvector/pgvector
https://rfriend.tistory.com/804
https://rfriend.tistory.com/804
https://rfriend.tistory.com/804
https://rfriend.tistory.com/804

= AF2ILILL

CEE‘—‘I / MyoungSig.Youn >

(@MegazoneCloud)

	슬라이드 1: PostgreSQL & Graph & Vector
	슬라이드 2
	슬라이드 3: PostgreSQL + PostGIS PostgreSQL + TimeScale PostgreSQL + Oraface PostgreSQL + Citus PostgreSQL + hstore PostgreSQL + AWS PostgreSQL + Azure PostgreSQL + Google
	슬라이드 4: PostgreSQL + GRAPH = AGE
	슬라이드 5: GRAPH
	슬라이드 6: GRAPH
	슬라이드 7: GRAPH
	슬라이드 8: GRAPH
	슬라이드 9: GRAPH
	슬라이드 10: IFA(Index-Free-Adjacency)
	슬라이드 11: IFA(Index-Free-Adjacency)
	슬라이드 12: ORACLE GRAPH
	슬라이드 13: SQL Server GRAPH
	슬라이드 14: SQL Server GRAPH
	슬라이드 15: PostgreSQL + Apache AGE(BITNINE)
	슬라이드 16: Architecture
	슬라이드 17: Architecture
	슬라이드 18: Architecture
	슬라이드 19: Cypher Cheat Sheet
	슬라이드 20: Cypher Cheat Sheet
	슬라이드 21: Demo
	슬라이드 22: PostgreSQL + Vector = pgVector
	슬라이드 23: VECTOR
	슬라이드 24: VECTOR
	슬라이드 25: VECTOR
	슬라이드 26: VECTOR
	슬라이드 27: VECTOR
	슬라이드 28: VECTOR
	슬라이드 29: VECTOR
	슬라이드 30: Demo
	슬라이드 31: 감사합니다.

